Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K

نویسندگان

  • P. I. Dorogokupets
  • A. M. Dymshits
  • K. D. Litasov
  • T. S. Sokolova
چکیده

The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at room and higher temperatures. The calculated triple points at the phase diagram have the following parameters: bcc-fcc-hcp is located at 7.3 GPa and 820 K, bcc-fcc-liquid at 5.2 GPa and 1998 K, and fcc-hcp-liquid at 106.5 GPa and 3787 K. At conditions near the fcc-hcp-liquid triple point, the Clapeyron slope of the fcc-liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp-liquid curve is higher (dT/dP = 13.7 K/GPa). Therefore, the hcp-liquid curve overlaps the metastable fcc-liquid curve at pressures of about 160 GPa. At high-pressure conditions, the metastable bcc-hcp curve is located inside the fcc-Fe or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid Density Modeling of Pure Refrigerants Using Four Lattice-Hole Theory Based Equations of State

The present study investigates the performance and relative accuracy of four lattice-hole theory based equations of state in modeling and correlating the liquid density of pure refrigerants. Following the gathering of a database of 5740 experimental liquid density datapoints of 36 pure refrigerants belonging to five different categories including CFCs, HCFCs, PFCs, HFCs and HFEs, ranging from 6...

متن کامل

Predicting the Liquid Density of Gas Condensates and LNG Mixtures from Equations of State

In this contribution, two approaches are followed to predict the saturated liquid density of liquefied natural gas (LNG) mixtures. In one approach, 12 cubic equations of state (EoSs), comprising the popular Peng-Robinson (PR) and Redlich-Kwong-Soave (RKS), are employed to predict the saturated liquid density of 20 LNG mixtures. In the other approach, these EoS are used in conjunction with a rec...

متن کامل

The properties of iron under core conditions from first principles calculations

The Earth’s core is largely composed of iron (Fe). The phase relations and physical properties of both solid and liquid Fe are therefore of great geophysical importance. As a result, over the past 50 years the properties of Fe have been extensively studied experimentally. However, achieving the extreme pressures (up to 360 GPa) and temperatures (∼6000 K) found in the core provide a major experi...

متن کامل

Removal of Basic Dye Bromophenol Blue from aqueous solution by Electrocoagulation using Al – Fe Electrodes: Kinetics, Equilibrium and Thermodynamics Studies.

Electrocoagulation (EC) in a batch cell with Al anode and Fe cathode in monopolar parallel (MP) connection was used for the removal of basic dye, Bromophenol Blue (BPB). The effects of current density, pH, temperature and initial dye concentration, on the process were investigated. Equlibrium data were analyzed using four model equations: Langmuir, Freudlinch, Temkin and Dubinin–Radushkevich. D...

متن کامل

Determination of the Parameters in HOM and BKW Equations of State for Detonation Products

One of the basic equations to analyze the detonation of high explosives is the equation of state of the detonation products. Due to the very high pressure of the product, the direct measurement of the thermodynamic variables such as pressure or temperature is not possible. In this research, the parameters of BKW and HOM equations of state of detonation products are determined via experimental m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017